Codes Associated with O+(2n,2r) and Power Moments of Kloosterman Sums

نویسنده

  • Dae San Kim
چکیده

In this paper, we construct three binary linear codes C(SO(2, q)), C(O(2, q)), C(SO(4, q)), respectively associated with the orthogonal groups SO(2, q), O(2, q), SO(4, q), with q powers of two. Then we obtain recursive formulas for the power moments of Kloosterman and 2-dimensional Kloosterman sums in terms of the frequencies of weights in the codes. This is done via Pless power moment identity and by utilizing the explicit expressions of Gauss sums for the orthogonal groups. We emphasize that, when the recursive formulas for the power moments of Kloosterman sums are compared, the present one is computationally more effective than the previous one constructed from the special linear group SL(2, q). We illustrate our results with some examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite families of recursive formulas generating power moments of Kloosterman sums: O^- (2n, 2^r) case

In this paper, we construct eight infinite families of binary linear codes associated with double cosets with respect to certain maximal parabolic subgroup of the special orthogonal group SO−(2n, 2r). Then we obtain four infinite families of recursive formulas for the power moments of Kloosterman sums and four those of 2-dimensional Kloosterman sums in terms of the frequencies of weights in the...

متن کامل

Ternary Codes Associated with O^-(2n,q) and Power Moments of Kloosterman Sums with Square Arguments

In this paper, we construct three ternary linear codes associated with the orthogonal group O − (2, q) and the special orthogonal groups SO − (2, q) and SO − (4, q). Here q is a power of three. Then we obtain re-cursive formulas for the power moments of Kloosterman sums with square arguments and for the even power moments of those in terms of the frequencies of weights in the codes. This is don...

متن کامل

Infinite Families of Recursive Formulas Generating Power Moments of Ternary Kloosterman Sums with Square Arguments Associated with O^{-}_{}(2n,q)

In this paper, we construct eight infinite families of ternary linear codes associated with double cosets with respect to certain maximal parabolic subgroup of the special orthogonal group SO − (2n, q). Here q is a power of three. Then we obtain four infinite families of recursive formulas for power moments of Kloosterman sums with square arguments and four infinite families of recursive formul...

متن کامل

Infinite Families of Recursive Formulas Generating Power Moments of Ternary Kloosterman Sums with Trace Nonzero Square Arguments: O(2n+1,2^{r}) Case

In this paper, we construct four infinite families of ternary linear codes associated with double cosets in O(2n+1, q) with respect to certain maximal parabolic subgroup of the special orthogonal group SO(2n + 1, q). Here q is a power of three. Then we obtain two infinite families of recursive formulas , the one generating the power moments of Kloosterman sums with " trace nonzero square argume...

متن کامل

An Infinite Family of Recursive Formulas Generating Power Moments of Kloosterman Sums with Trace One Arguments: O(2n+1,2^r) Case

In this paper, we construct an infinite family of binary linear codes associated with double cosets with respect to a certain maximal parabolic subgroup of the orthogonal group O(2n+1, q). Here q is a power of two. Then we obtain an infinite family of recursive fomulas generating the odd power moments of Kloosterman sums with trace one arguments in terms of the frequencies of weights in the cod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0807.4671  شماره 

صفحات  -

تاریخ انتشار 2008